
Plotting choropleth maps in R with tmap
using CSO ESRI shapefiles and StatBank data

Eoin Horgan

January 27, 2020

Contents

1 Introduction 1

2 Mapping in R 2
2.1 Getting the data . 2
2.2 Plotting map data . 3
2.3 Customising map appearance . 4

2.3.1 Colour palette . 5
2.3.2 Clustering . 5
2.3.3 Borders . 6
2.3.4 Miscellaneous options . 6

3 Importing StatBank data 8
3.1 Importing StatBank tables . 8
3.2 Joining data . 9

4 Other considerations 11
4.1 Interactivity . 11
4.2 Other tmap features . 12

4.2.1 Layers . 12
4.2.2 Facets . 12

4.3 Saving figures . 12
4.4 Other packages . 13

4.4.1 Spatial data manipulation . 13
4.4.2 General plotting packages . 13
4.4.3 Mapping packages . 14

4.5 More information . 14

1 Introduction

This tutorial will lay out the use of the tmap package of the R programming language
to create choropleth maps, as well as how to import data from the CSO statbank so it
can be used in such a map, as in Figure 1.

Figure 1: Persons aged 15 years and over in Employment (Thousand), by NUTS3 region,
from table QNQ22.

A choropleth map is a thematic map in which areas are shaded or patterned in propor-
tion to the measurement of the statistical variable being displayed on the map.

Wewill begin with obtaining and plotting the shapefile data, then show how statbank
data can be downloaded, joined onto the shapefile data and used as the colour variable
for plotting. We will then discuss further options for customising the appearance of
these maps.

The tmap package will be used for the plotting, as it is a modern, fast and highly
customisable plotting package. Alternative packages will be briefly discussed later.

1

2 Mapping in R

2.1 Getting the data

The maps used in this tutorial are located on the CSO website at
http://census.cso.ie/censusasp/saps/boundaries/ED_SA Disclaimer1.htm. These are
the 2011 Census Boundaries, the most up-to-date data available. A variety of files are
available, NUTS 3, NUTS 2, administrative counties, electoral divisions, etc. These files
are ESRI shapefiles, a mostly open vector format. Each of the zip archives contains a
main .shp file as well as several necessary auxiliary files.

The process of getting StatBank tables and Irish geographic data is simplified by
the use of the csodata package, which is developed by the CSO. If you do not already
have it installed, then type

install.packages("csodata")

into the R console. This is only necessary the first time you wish to use the csodata

package, after the first time it is not necessary. Then we must load and attach the
package. This is required every time you want to use a package, but only needs to be
done once in an R session.

library(csodata) # reading shapefiles and manipulating shapedata

then the map data can be downloaded and made available in R very simply by running:

shp <- cso_get_geo("NUTS3")

a variety of different flags can be used to retrieve different sets of geographic data.
After the package is loaded, you can view the help page for this function using

?cso_get_geo

to see all of the options. The documentation for any command can be brought up by
typing a question mark, followed by the command name.

The csodata package uses the sf package for loading the shapefiles, and manipu-
lating the map data. The map data object shp is a sf (simple features) object:

> class(shp)

[1] "sf" "data.frame"

This is like a normal R data frame, except that it has a special column “geometry”. This
contains all the vector data required to draw a polygon. Even if you carry out a subset
operation on shp that would normally exclude this column it is still included with the re-
turned data frame. The only way to remove this column is to use st_drop_geometry().
All the functions from the sf package have the prefix st_, and work on sf objects.

shp is an object with 8 observations and 19 variables. There are 8 NUTS 3 regions,
so what are the variables?

> names(shp)

[1] "NUTS1" "NUTS1NAME" "NUTS2" "NUTS2NAME" "NUTS3" "NUTS3NAME

" "GEOGID" "MALE2011" "FEMALE2011" "TOTAL2011"

[11] "PPOCC2011" "UNOCC2011" "HS2011" "VACANT2011" "PCVAC2011"

"TOTAL_AREA" "LAND_AREA" "CREATEDATE" "geometry"

2

http://census.cso.ie/censusasp/saps/boundaries/ED_SA%20Disclaimer1.htm

The data includes the NUTS region code and name for NUTS levels 1, 2 and 3, as
well as the number of male and female residents, permanent private housing units, and
the land area of the region. An explanation for the variables is on the CSO website.

Lets take a look at some of the more interesting columns:

> shp[, 5:7]

Simple feature collection with 8 features and 3 fields

geometry type: MULTIPOLYGON

dimension: XY

bbox: xmin: 17491.14 ymin: 19589.93 xmax: 334558.6 ymax:

466919.3

epsg (SRID): NA

proj4string: +proj=tmerc +lat_0=53.5 +lon_0=-8 +k=1.000035 +x_0=200000

+y_0=250000 +datum=ire65 +units=m +no_defs

NUTS3 NUTS3NAME GEOGID geometry

1 IE024 South -East (IE) R6 MULTIPOLYGON (((226795.5 90...

2 IE025 South -West (IE) R7 MULTIPOLYGON (((18146.05 95...

3 IE011 Border R1 MULTIPOLYGON (((306570.4 30...

4 IE012 Midland R5 MULTIPOLYGON (((223420.6 29...

5 IE013 West R8 MULTIPOLYGON (((48596.74 26...

6 IE021 Dublin R2 MULTIPOLYGON (((324832.3 22...

7 IE022 Mid -East R3 MULTIPOLYGON (((283537.7 29...

8 IE023 Mid -West R4 MULTIPOLYGON (((195253.8 21...

We can see that the projection is a transverse Mercator centred on Ireland. tmap

can correctly plot most projections, but sf can transform between projections using
st_transform() if required (some web-based interactive maps require theWGS 84 pro-
jection, for example). Each region is uniquely identified by a name, NUTS 3 code and a
GEOGID. When we import the statbank datafile we will need at least one of these to be
in the data so that we have a matching variable to perform a join on.

2.2 Plotting map data

The tmap package is a mapping package specialised for thematic maps, which show
features relating to a particular themeor aspect. Install the tmap package (if necessary)
and load it:

install.packages ("tmap") # Create comments using hashmarks

library(tmap)

tmap uses ggplot2 style commands – an initial declaration of a plot with the data
to be plotted, followed by commands added onto the first in order to refine the visuali-
sation. As an example we will do a simple choropleth using the TOTAL2011 column, the
total population of the region in 2011. This data comes included with the shapefile, so
it is useful for showing the capabilities of tmap without needing to merge another data
set onto shp.

t <- tm_shape(shp) + tm_fill(col="TOTAL2011")

t

This creates a tmapobject t based on the data source shp, and then fills its polygons,
with colour dependant on the value in the TOTAL2011 column. The image will not be

3

https://www.cso.ie/en/census/census2011boundaryfiles/

Figure 2: Total population in 2011, from ESRI shapefile provided by CSO.

rendered and displayed until you call on the tmap object, using either “t” or “print(t)”.
Doing so results in Figure 2.

This is the basic usage of the tmap package. Now it is only a matter of customising
the appearance of the plot and adding new data onto the shapefiles so it can be plotted.

2.3 Customising map appearance

This is just an overview of themost important features required for customising amap.
Formore depth, readers should consult the documentation for the tm_fill and tm_layout
commands on rdocumentation.org or in your console. Remeber, to bring up the relevant
documentation for tm_fill, use:

?tm_fill

4

https://www.rdocumentation.org/packages/tmap/versions/2.3-1/topics/tm_fill
https://www.rdocumentation.org/packages/tmap/versions/2.3-1/topics/tm_layout
rdocumentation.org

2.3.1 Colour palette

The colour palette used should be passed to tm_fill as palette = <your palette>. I
prefer using palette = viridisLite::viridis(20) for continuous data. Viridis ranges
from dark purple to light green, maintains a gradient when printed in grayscale, and is
easier to read for colourblind users1. By default a legend will be generated and auto-
matically positioned to avoid overlap with the map. There are many options relating to
the legend, most importantly the default title of the legend can be overridden using the
argument title and the legend can be shown in ascending order (smallest on bottom)
using legend.reverse = TRUE.

The supplementary package tmaptools includes an interactive colour explorer that
can be used to see and compare sequential, categorical or diverging palettes and get
the code required to generate them. Enter library(tmaptools); palette_explorer()in
the console to activate it. If you choose a diverging palette then you should also set the
argument midpoint, which defaults to 0.

Additionally colorNA ="<colour name>" can be used to set the color used for NA
values. See the ggplot2 colour names for acceptable names or type colors() in the
console to get a list of all the R colours.

t <- tm_shape(shp) +

tm_fill(col="TOTAL2011", palette = viridisLite :: viridis (20),

colorNA = "grey50", legend.reverse = TRUE ,

title = "Population 2011")

t

2.3.2 Clustering

By passing the argument style to tm_fill, you can choose whether to use discrete bins
for the data or a continuous scale. From the tm_fill documentation: “method to pro-
cess the color scalewhen col is a numeric variable. Discrete options are "cat", "fixed", "sd",
"equal", "pretty", "quantile", "kmeans", "hclust", "bclust", "fisher", "jenks" and "log10_pretty".
A numeric variable is processed as a categorical variable when using "cat", i.e. each
unique value will correspond to a distinct category. For the other discrete options (ex-
cept "log10_pretty"), see the details in classIntervals2.

Continuous options are "cont", "order" and "log10". The first maps the values of col to
a smooth gradient, the second maps the order of values of col to a smooth gradient, and
the third uses a logarithmic transformation.”

Also note that when using one of the discrete options the argument n can be used
to determine the number of bins to sort the data into.

t <- tm_shape(shp) +

tm_fill(col="TOTAL2011", style="fisher", n = 3)

t

1See https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html for more about
viridis and the other viridis palettes

2https://www.rdocumentation.org/packages/classInt/versions/0.1-7/topics/classIntervals

5

http://sape.inf.usi.ch/sites/default/files/ggplot2-colour-names.png
https://www.rdocumentation.org/packages/classInt/versions/0.1-7/topics/classIntervals
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://www.rdocumentation.org/packages/classInt/versions/0.1-7/topics/classIntervals

2.3.3 Borders

Borders can be drawn between regions by using the command tm_borders. The colour
can be chosen with argument col="<colour name>", and like colorNA can be any of
the R colour names. The line width is set with argument lwd=<desired line width>.

t <- tm_shape(shp) +

tm_fill(col="TOTAL2011") +

tm_borders(col = "black", lwd = 1)

2.3.4 Miscellaneous options

Many other visual options can be set using the tm_layout function, for example adding
a title to themapwith title = "<Your title>", removing borders with frame = FALSE

or changing the scale of all text and the legend using scale = <A number, larger

than 1 for increased scale>. The last option is particularly useful when saving fig-
ures, if you increase the resolution when saving the legend is not increased proportion-
ally, so the scale argument is necessary so that the legend is still readable.

t <- tm_shape(shp) +

tm_fill(col="TOTAL2011", palette = viridisLite :: viridis (20),

style="cont", legend.reverse = TRUE ,

title = "Population 2011") +

tm_borders(col = "black") +

tm_layout(frame = FALSE , scale = 1.6)

t

Using all of these options together results in Figure 3.

6

Figure 3: Total population in 2011. Same data as in Figure 2, only aesthetic options
differing.

7

3 Importing StatBank data

3.1 Importing StatBank tables

Here we again use the csodata package to simplify the process of acquiring our data.
We can download the QNQ22 dataset (Persons aged 15 years and over by NUTS 3 Re-
gions, Quarter and Statistic) from the CSO statbank into the “df” object with one com-
mand;

df <- cso_get_data("QNQ22")

Lets take a look at df

> names(df)

[1] "Statistic" "NUTS .3. Regions" "NUTS .3. Regions.id" "1997Q4"

"1998Q1" "1998Q2" "1998Q3" "1998Q4" "1999Q1"

[9] "1999Q2" "1999Q3" "1999Q4" "2000Q1" "2000Q2" "2000Q3"

"2000Q4" "2001Q1" ...

Cut for brevity , continues onto "2017Q2"

There is one column for every quarter. Statistic is a factor3 with five levels, namely:

> levels(df$Statistic)

[1] "Persons aged 15 years and over in Employment (Thousand)"

[2] "Unemployed Persons aged 15 years and over (Thousand)"

[3] "Persons aged 15 years and over in Labour Force (Thousand)"

[4] "ILO Unemployment Rate (15 - 74 years) (%)"

[5] "ILO Participation Rate (15 years and over) (%)"

Most importantly for us, df$NUTS.3.Regions.id contains the codes of the NUTS 3 re-
gions, and we can join this into shp on shp$NUTS3.

> levels(df$NUTS .3. Regions)

"State" "Border" "Midland" "West" "Dublin" "

Mid -East" "Mid -West" "South -East" "South -West"

> levels(df$NUTS .3. Regions.id)

"-" "IE11" "IE12" "IE13" "IE21" "IE22" "IE23" "IE24" "IE25"

> shp$NUTS3

"IE024" "IE025" "IE011" "IE012" "IE013" "IE021" "IE022" "IE023"

However if we do this and then check our results with summary(is.na(shp))we will
findmultiple NA values. Unfortunately the codes of NUTS 3 regions are not identical, as
shp includes a preceding 0. We need to manually adjust one of the tables, for example
by using:

shp$NUTS3 <- str_remove(shp$NUTS3 , "0")

3See here if you are unfamiliar with factors in R.

8

https://swcarpentry.github.io/r-novice-inflammation/12-supp-factors/

3.2 Joining data

We will use the package dplyr4 in order to join the data frames.

install.packages ("dplyr")

library(dplyr)

dplyrmakes seven types of joins available, but we will only need to use a basic left join.

shp <- subset(shp , select = -c(NUTS1 , NUTS1NAME , NUTS2 , NUTS2NAME ,

MALE2011 , FEMALE2011 , TOTAL2011 , PPOCC2011 , UNOCC2011 ,

HS2011 , VACANT2011 , PCVAC2011 , TOTAL_AREA ,

LAND_AREA , CREATEDATE))

shp <- left_join(shp , df, by = c("NUTS3" = "NUTS .3. Regions.id"))

Since there aremany unused columns in the data framewe can drop columnswe are
not using, by passing the subset functionwith aminus sign in front of a vector of column
names. Thenwecan join shp and dfby the columns shp$NUTS3 and df$NUTS.3.Regions.id.
If you get a warning about coercing character factors to character vectors during the
join then it can be safely ignored.

Next we will choose the quarter and statistic to plot

var <- "2017Q2" # Choose from "1997Q4" to "2017Q2"

stat <- as.character(levels(shp$Statistic)[4]) # Choose from 1 to 5

[1] Persons aged 15 years and over in Employment (Thousand)

[2] Unemployed Persons aged 15 years and over (Thousand)

[3] Persons aged 15 years and over in Labour Force (Thousand)

[4] ILO Unemployment Rate (15 - 74 years) (%)

[5] ILO Participation Rate (15 years and over) (%)

Finally, we can plot this data using what we learned in § 2.2 to obtain Figure 4.

t <- tm_shape(shp[shp$Statistic == stat ,]) +

tm_fill(col=var , palette = viridisLite :: viridis (20),

style = "cont", colorNA = "grey50",

title = "ILO Unemployment Rate (%) ,\n(15 - 74 years), 2017Q2",

popup.vars=c("GEOGID", var)) +

tm_borders(col = "black") +

tm_layout(frame = FALSE , scale = 1.1, legend.width = 0.7)

t

After matching, remember to check your joined data using summary(is.na(shp)) to
see if there are any NA values, which may indicate missing data in the original dataset
or a failure to match elements in the two datasets.

4dplyr is part of the tidyverse, a collection of packages for data science. Discussion of its features
and merits is beyond the scope of this tutorial, but if the reader is interested in R then it’s well worth
looking into.

9

https://dplyr.tidyverse.org/reference/join.html

Figure 4: ILO Unemployment Rate (15 - 74 years) (%) by NUTS 3 region, 2017 quarter
two, from table QNQ22.

10

4 Other considerations

4.1 Interactivity

Youmay have noticed the argument popup.vars in the last code excerpt of the previous
section. This is an option that is only used in tmaps interactivemode. To see it in action
type this into the console:
tmap_mode("view")

t

You should see something like Figure 5.

Figure 5: ILO Unemployment Rate (15 - 74 years) (%) by NUTS 3 region, 2017 quarter
two. Data from table QNQ22, interactive plot.

The popup variables are set by us using the popup.vars argument, but the first element
(in the image, the bolded Border at the top of the popup) is taken from the first column

11

of the data frame passed to tmap, in this case the NUTS3NAME column. This also appears
when hovering over one of the regions.

One thing to note is that by default the map files encode any text fields as “UTF-8”,
and unfortunately due to this Unicode characters may not be displayed properly on the
popup. This ismost likely to occur when attempting to display place names that include
a fada. In order to display these correctly, you can convert the name field to “latin1”
encoding using the iconv function. For example, with the electoral division dataset:

shp$EDNAME <- iconv(shp$EDNAME , to = "latin1")

Which will result in fadas properly displaying in the popup.
This method is an easy way to convert a tmap map you have already made into an

interactivemap, but if yourmain goal is tomake interactivemaps, then I recommend not
using tmap. This is because the tmap object you create is converted into a leaflet map
and then displayed, but using pure leaflet is significantly faster and gives more options
for controlling interactive plots. For example you can change the colour variablewithout
redrawing the polygons, allowing the map to update almost instantly.

In order to return to normal plotting mode, use:

tmap_mode("plot")

4.2 Other tmap features

This is a brief discussion of someof the other features of tmapwhichwe have not shown
in this tutorial, but which may be of interest to the reader.

4.2.1 Layers

Multiple sf objects can be plotted in the same tmap object in order to plot them next to
each other or to plot layers on top of each other.

4.2.2 Facets

A tmap object can be created with multiple facets, for example, displaying multiple
maps side-by-side with different data, or splitting one large map into multiple smaller
ones by its constituent polygons and displaying them next to each other (for example
splitting a map of Ireland’s counties by province to create four smaller maps). It’s also
possible to join these facets together into an animated .gif using the tmap_animation

function.

4.3 Saving figures

If you wish to save your figures for any reason then there are two options available to
you. If you are using RStudio, then you can click on Export above the plot window, then
Save as Image. This will bring up a new window allowing you to choose where to save
the image, the format used and allowing you to resize while maintaining the aspect
ratio.

If you prefer to do so programmatically you can use :

12

Figure 6: Example of facets from the tmap: get started! vignette: https://cran.r-
project.org/web/packages/tmap/vignettes/tmap-getstarted.html

tmap_save(tm = NULL , filename = NA, width = NA,

height = NA, units = NA)

Where tm is the tmap object (in these examples t). filename is the filename, optionally
including a full path. units is one of "in", "cm", "mm" or "px" (pixels) and width and
height are the image size in your chosen dimensions.

Note that these methods resize the legend and text in different ways. You will usu-
ally need to use scale larger than one when using RStudio and smaller than one with
tmap_save.

4.4 Other packages

We have only briefly touched on the usage of two packages, sf and tmap but the R
ecosystem of packages for mapping is large and growing by the day, and there are
many other good options that can be used. There are far too many packages to give a
fair treatment of them all, so only a brief description will be given here, and the reader
can investigate further if they are interested by any of them.

4.4.1 Spatial data manipulation

Before sf became the standard for vector geometry sp, along with the auxiliary pack-
ages rgdal and rgeoswere the main packages used for spatial data manipulation. You
may still see them used in some older guides online, but they have largely been super-
seded by sf, which is easier to work with and much, much faster.

4.4.2 General plotting packages

plotly is a package that can be used for general plotting as well as mapping, however
it suffers from being so general its maps were slow to render and not as customisable
as other packages.

ggplot2 is a widely used general plotting package that can also be used for map-
ping. Due to it’s popularity there is a huge amount of information about it online, if you’re
having trouble getting your map to look correct. However it’s only possible to make it
interactive by converting to a plotly object. The tmap style of added commands is based
on the syntax of ggplot2’s commands.

13

https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html
https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html

googleVis is a package that can be used for general plots as well as interactive
maps on top of a google maps basemap.

Highcharter is a package for interactive general charts, stock plotting over time
and mapping. It has shiny integration and a fairly extensive series of examples, and by
default produces good looking graphs and maps. It uses tidyverse style piped com-
mands, instead of ggplot2 style addition. However unlike the other options on this list
it is a paid product, requiring a licence for commercial use.

4.4.3 Mapping packages

Leaflet is conversion of a popular JavaScript library for interactive maps. It’s one of
the faster interactive mapping packages, and has a wide range of basemaps that can
be used5. It also has integration with shiny, so that it can be run in and dynamically
updated in a shiny app. It uses tidyverse style piped commands.

mapview is a package for quickly viewing spatial data in interactive maps. It is in-
tended to be used to gain an understanding of a dataset, not for presentation grade
visualisations.

rCharts is a package used to access JavaScript visualisation library’s in R. It uses
a formula style syntax based on the lattice package and requires some familiarity with
JavaScript. Some of the JavaScript libraries available through this package, like High-
charts and leaflet already have native R implementations.

4.5 More information

If you felt that your skills in R were lacking or prevented you from following along then
try going through this tutorial https://www.tutorialspoint.com/r/index.htm, or acquire
and read a copy of R in a Nutshell by Joseph A. Adler.

If you liked this tutorial but felt it didn’t go far enough in discussing mapping tech-
niques then have a look at Geocomputation with R by Robin Lovelace, Jakub Nowosad
and Jannes Muenchow. You can purchase a physical copy, but it’s also available for
free online at https://geocompr.robinlovelace.net/index.html.

If you understood everything and want more interactivity try looking up shiny apps,
which can allow you to make html webapps and allow them to be run by users without
R installed. See https://shiny.rstudio.com/tutorial/ for a tutorial on shiny.

5See http://leaflet-extras.github.io/leaflet-providers/preview/ to see them all.

14

https://www.tutorialspoint.com/r/index.htm
https://geocompr.robinlovelace.net/index.html
https://shiny.rstudio.com/tutorial/
http://leaflet-extras.github.io/leaflet-providers/preview/

	Introduction
	Mapping in R
	Getting the data
	Plotting map data
	Customising map appearance
	Colour palette
	Clustering
	Borders
	Miscellaneous options

	Importing StatBank data
	Importing StatBank tables
	Joining data

	Other considerations
	Interactivity
	Other tmap features
	Layers
	Facets

	Saving figures
	Other packages
	Spatial data manipulation
	General plotting packages
	Mapping packages

	More information

