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1.1 Introduction

Statistical analysis is used to document relationships among variables. Relationships that yield
dependable predications can be exploited commercially or used to eliminate waste from processes.  A
marketing study done to learn the impact of price changes on coffee purchases is a commercial use. A
study to document the relationship between moisture content of raw material and yield of usable final
product in a manufacturing plant can result from finding acceptable limits on moisture content and
working with suppliers to provide raw material reliably within these litmus. Such efforts can improve the
efficiency of manufacturing process.

We strive to formulate statistical problems in terms of comparisons. For example, the marketing study in
the preceding paragraph was conducted by measuring coffee purchases when prices were set a several
different levels over a period of time. Similarly, the raw material study was conducted by comparing the
yields from batches of raw materials that exhibited moisture content.

1.2 Scatterplots

Scatterplots display statistical relationship relationships between two metric variables (e.g. price and cc)
in this section the details of scatterplotting are presented using the data in Table 1. The data were
collected for used in compiling the New Car Index in the Irish CPI

Table 1. Characteristics of cars used in the Irish New Car Price Index

Price

£

(p)

CC

(cc)

No. of
doors

(d)

Horse
Power

(ps)

Weight

Kg

(w)

Length

cm

(l)

Power
steering

(pst)

ABS

(abs)

Air
bags

(ab)
1.  Toyota Corolla 1.3L Xli Saloon 13,390 1300 4 78 1200 400 1 0 0
2.  Toyota Carina 1.6L SLi Saloon 15,990 1600 4 100 1400 450 1 1 1
3.   Toyota Starlet 1.3L 10,780 1300 3 78 1000 370 0 0 0
4.   Ford Fiesta Classic 1.3L 9,810 1100 3 60 1000 370 0 0 1
5.   Ford Mondeo LX  1.6I 15,770 1600 4 90 1400 450 1 1 1
6.   Ford Escort CL 1.3I 12,095 1300 5 75 1200 400 1 0 0
7.   Mondeo CLX 1.6i 16,255 1600 5 90 1400 450 1 1 1
8.   Opel Astra GL X1.4NZ 12,935 1400 5 60 1200 400 1 0 0
9.   Opel Corsa City X1.2SZ 9,885 1200 3 45 1000 370 1 0 1
10. Opel Vectra GL X1.6XEL 16,130 1600 4 100 1400 450 1 1 1
11. Nissan Micra 1.0L 9,780 1000 3 54 1000 370 0 0 0
12. Nissan Almera 1.4GX 5sp 13,445 1400 5 87 1200 400 1 0 0
13. Nissan Primera SLX 16,400 1600 4 100 1400 450 1 1 1
14. Fiat Punto 55 SX 8,790 1100 3 60 1000 370 0 0 0
15. VW Golf CL 1.4 12,995 1400 5 60 1200 400 1 0 0
16. VW Vento CL 1.9D 15,100 1900 4 64 1400 450 1 1 1
17.  Mazda 323 LX 1.3 12,700 1300 3 75 1200 400 1 0 0
18.  Mazda 626 GLX 2.0I S/R 17,970 2000 5 115 1400 450 1 1 1
19.  Mitsubishi Lancer 1.3 GLX 13,150 1300 4 74 1200 400 1 0 1
20.  Mitsubishi Gallant 1.8 GLSi 16,600 1800 5 115 1400 450 1 1 1
21.  Peugeot 106 XN 1.1 5sp 9,795 1100 5 45 1000 370 0 0 0
22. Peugeot 306 XN 1.4  DAB 12,295 1400 4 75 1200 400 1 0 0
23. 406 SL 1.8 DAB S/R 16,495 1800 4 112 1400 450 1 1 1
24. Rover 214 Si 12,895 1400 3 103 1200 400 1 0 1
25. Renault Clio 1.2 RN 10,990 1200 5 60 1000 370 1 0 1
26. Renault Laguna 15,990 1800 5 95 1400 450 1 1 1
27. Volvo 440 1.6 Intro Version 14,575 1600 5 100 1400 450 1 0 1
28. Honda Civic 1.4I SRS 14,485 1400 4 90 1200 400 1 0 0

Scatterplots are used to try to discover a tendency for plotted variables to be related in a simple way.
Thus the more the scatterplot reminds us of a mathematical curve, the more closely related we infer the
variables are.  In the scatterplot a direct relationship between the two variables is inferred.
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 Figure 1 below shows a scatter plot of price (£) versus cylinder capacity (cc) for the data in Table 1
above.

The above graph shows a relatively a linear relationship between the two metric variables (price and cc).
However to investigate further the relationship between these two variables we can apply the universal
method of logarithmic transformation to the cc variable. This transformation discounts larger values of cc
and leaves smaller and intermediate ones intact and has the effect of increasing the linearity of
relationship (see graph below).

Figure 1: Price vs Cylinder capicity
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Figure 2: Price vs log(cc)
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1.3  Correlation coefficient

The descriptive statistic most widely used to summarise a relationship between metric variables is a
measure of the degree of linearity in the relationship. It is called product-moment correlation coefficient
denoted by the symbol r and it is defined by

r
n

xi x

sx

yi y

syi

n
=

−

− −
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where x  and sx are the mean and standard deviation of the x variable and y  and sy are the mean and

standard deviation of the y variable.

The product moment correlation coefficient has many properties, the most important of which are

1. Its numerical value lies between – 1 and + 1, inclusive

1. If  r = 1, then the scatterplot shows that the data lie exactly on a straight line with a positive
slope; if r = -1, then the scatterplot shows that the data lie on a straight line with a negative
slope.

1. An r = 0 indicates that there is no linear component in the relationship between the two
variables.

These properties emphasise the role of r as a measure of linearity. Essentially, the more the scatterplot
looks like a positively sloping straight line, the closer r is to +1, and the more the scatterplot looks like a
negatively sloping straight line, the closer r is to –1.

Using the equation above, r is estimated for the relationship shown in Fig. 1 to be 0.92 indicating a
strong linear relationship between the price of a new car and cylinder capacity. For the relationship
shown in Fig. 2, r is estimated to be 0.93, indicating that using the logarithmic transformation does
indeed increase the linearity of relationship between the two metric variables. The LINEST function in
EXCEL was used to estimate r in both of the above relationships.



6

2. Fitting Curves- Regression analysis

In the sections above we showed how to summarise the relationships between metric variables using
correlations. Although correlations are valuable tools, they are not powerful enough to handle many
complex problems in practice. Correlations have two major limitations:

• They summarise only linearity in relationships.
 
• They do not yield models for how one variable influences another.

 
 The tool of regression analysis overcomes these limitations by using mathematical curves to summarise
relationships among several variables. A regression model consists of the mathematical curve
summarising the relationship together with measures of variation from that curve. Because any type of
curve can be used, relationships can be non-linear.
 
 Regression analysis also easily accommodates transformations of variables and categorical variables, and
it provides a host of diagnostic statistics that help assess the utility of variables and transformations and
the impact of such features as outliers and missing data.
 
 2.1 Models
 
 A model describes how a process works. For scientific purposes, the most useful models are statements of
the form “ if certain conditions apply, then certain consequences follow”. The simplest of such statements
assert that the list of conditions result in a single consequence without fail. For example, we learn in
physics that if an object falls toward earth, then it accelerates at about 981 centimetres per second.
 
 A less simple statement is one that assesses a tendency: “Loss in competition tends to arouse anger.”
While admitting the existence of exceptions, this statement is intended to be universal, that is anger is the
expected to loss in competition.
 
 To be useful in documenting the behaviour of processes, models must allow for a range of consequences
or outcomes. They must also be able to describe a range of conditions, fixed levels of predictor variables
(x), for it is impossible to hold conditions constant in practice. When a model describes the range of
consequences corresponding to a fixed set of conditions, it describes local behaviour. A summary of the
local behaviours for a range of conditions is called global behaviour. Models are most useful if they
describe global behaviour over a range of conditions encountered in practice. When they do, they allow
us to make predications about the consequences corresponding to conditions that have not actually been
observed. In such cases, the models help us reason about processes despite being unable to observe them
in complete detail.
 
 2.2 Linear Regression
 
 To illustrate this topic refer back to the sample of cars in Table 1 and Figure 1 (the outcome of the
scatterplot of price vs. cc) above. Our eyes detect a marked linear rend in the plot. Before reading further,
use a straight-edge to draw a line through the points that appear to you to be the best description of the
trend. Roughly estimate the co-ordinates of two points (not necessarily points corresponding to data
points) that lie on the line. From these two estimated points, estimate the slope and y intercept of the line
as follows:
 

 Let ( )x y1 1,  and ( )x y2 2, denote two points, with ( )x y1 1≠ on a line whose equation is y

= a + bx.
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 Then the slope of the line is
 
 

 b y
x

y
x x

y
= =

−

−Difference in  coordinates
Difference in  coordinates

1 2

1 2
 
 and the y intercept is
 

 a
x y

x x
x y

=
−

−1 2 2 1

1 2
 

 Next, describe the manner in which the data points deviate from your estimated line. Finally, suppose you
are told that car has cylinder capacity of 1600cc, and you are asked to use your model to predict the price
of the car. Give your best guess at the range of plausible market values. If you do all these things, you
will have performed the essential operations of a linear regression analysis of the data.
 
 If you followed the suggestions in the pervious paragraph, you were probably pleased to find that
regression analysis is really quite simple. On the other hand, you may not be pleased with the prospect of
analysing many large data sets “by eye” or trying to determine a complex model that relates price
cylinder capacity, horse power, weight and length simultaneously. To do any but the most rudimentary,
the help of a computer is needed.
 Statistical software does regression calculations quickly, reliably, and efficiently. In practice one never
has to do more than enter data, manipulate data, issue command that ask for calculations and graphs, and
interpret output. Consequently, computational formulas are not presented here.
 
 The most widely available routines for regression computations use least squares methods. In this section
the ideals behind ordinary least squares (OLS) are explained. Ordinary least squares fits a curve to data
pairs ( ) ( ) ( )x y x y x yn n1 1 2 2, , , , , ,L  by minimising the sum of the squared vertical distances between the y
values and the curve. Ordinary least squares is a fundamental building block of most other fitting
methods.
 
 
 2.3 Fitting a line by ordinary least squares
 
 When a computer program (in this case the LINEST function in EXCEL) is asked to fit a straight-line
model to the data in Figure 1 using the method of ordinary least squares, the following equation is
obtained
 

 y x
^

.= +307 911
 
 The symbol y stands for a value of Price (response variable), and the symbol ^ over the y indicates that
the model gives only an estimated value. The symbol x (predictor variable) stands for a value of cylinder
capacity.
 
 This result can be put into the representation
 

 Observation = Fit and Residual
 

 where y is the observation, y
^

is the fit(ted) value and y y−
^

is the residual.
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 Consider car No. 1 in Table 1 that has a cylinder capacity x = 1300. The corresponding observed price is
y = 13,390. The fitted value given by the ordinary least square line is
 

 y
^

 = 307 + 9.11(1300)
      = 307 + 11,843
      = 12,150

 

 The vertical distance between the actual price and the fitted price is y y−
^

= 13,390 – 12,150 = 1,240,
which is the residual. The positive sign indicated the actual price is above the fitted line. If the sign was
negative it means the actual price is below the fitted line.
 
 Figure 3 below shows a scatterplot of the data with ordinary least squares line fitted through the points.
This plot confirms that the computer can be trained to do the job of fitting a line. The OLS line was fitted
using the linear trend line option in WORD for a chart.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Another output from the statistical software is a measure of variation: s = 1028. This measure of variation
is the standard deviation of the vertical differences between the data points and the fitted line, that is, the
standard deviation of the residuals.
 
 An interesting characteristic of the method of least squares is: for any data set, the residuals from fitting a
straight line by the method of OLS sum to zero (assuming the model includes a y – intercept term). Also
because the mean of the OLS residuals is zero, their standard deviation is the square root of the sum of
their squares divided by the degrees of freedom.  When fitting a straight line by OLS, the number of
degrees of freedom is two less than the number of cases, denoted by n-2 because 1) the residuals sum to
zero and 2) the sum of the products of the fitted values and residuals, case by case is zero.
 

Figure 3: Price vs Cylinder capicity and OLS line
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 2.4 Analysis of Residuals
 
 Two fundamental tests are applied to residuals from a regression analysis: a test for normality and a
scatterplot of residuals versus fitted values. The first test can be performed by checking the percentage of
residuals within in one, two and three standard deviations of their mean, which is zero. The second test
gives visual cues of model inadequacy.
 
 

 Table 2. Fitted values and Residuals for new car data
 
  CC

 
 
 

 (cc)
 

 Price
 

             £
 

             (p)
 

 Fitted
 Price

 
 

 (fp)

 Residual
 
 
 

 (res=p-fp)

 1  1300  13,390  12,150  1,240
 2  1600  15,990  14,883  1,107
 3  1300  10,780  12,150  - 1,370
 4  1100  9,810  10,328  - 518
 5  1600  15,770  14,883  887
 6  1300  12,095  12,150  -55
 7  1600  16,255  14,883  1,372
 8  1400  12,935  13,061  - 126
 9  1200  9,885  11,239  - 1,354

 10  1600  16,130  14,883  1,247
 11  1000  9,780    9,417  363
 12  1400  13,445  13,061  384
 13  1600  16,400  14,883  1,517
 14  1100  8,790  10,328  - 1,538
 15  1400  12,995  13,061  - 66
 16  1900  15,100  17,616  - 2,516
 17  1300  12,700  12,150  550
 18  2000  17,970  18,527  - 557
 19  1300  13,150  12,150  1,000
 20  1800  16,600  16,705  - 45
 21  1100  9,795  10,328  - 533
 22  1400  12,295  13,061  - 766
 23  1800  16,495  16,705  - 210
 24  1400  12,895  13,061  - 166
 25  1200  10,990  11,239  - 249
 26  1800  15,990  16,705  - 715
 27  1600  14,575  14,883  - 308
 28  1400  14,485  13,061  1,424

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4: Scatterplot of Residual vs. Fitted from new car data
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 What do we look for in a plot of residuals versus fitted values? We look for a plot that suggests random
scatter. As we noted above, the residuals satisfy the constraint
 

 y y y−





=∑
^ ^

0

 Where the summation is done over all cases in the data set. The constraint, in turn, implies that the
product-moment correlation coefficient between the residuals and the fitted values is zero. If the
scatterplot is somehow not consistent with this fact because it exhibits a trend or other peculiar
behaviour, then we have evidence that the model has not adequately captured the relationship between x
and y. This is the primary purpose of residual analysis: to seek evidence of inadequacy.
 
 The scatterplot in Figure 3 suggests random scatter and the regression equation above is, therefore,
consistent with the above constraint.
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 3. Hedonic Regression model
 
 3.1 The inclusion of additional metric variables
 
 So far the variable used to account for the variation in the price of a new car is a measure of a physical
characteristic which is more or less permanent, though cylinder capacity can change with improvements
or deteriorations. This variable does not link up directly with economic factors in the market place,
however. Regardless of the cylinder capacity of the car the price of a new is also related to the
horsepower, weight, length and number of doors.
 
 Defining the characteristics of a new car as follows
 

 x1  = cylinder capacity  (cc)
 x2  = number of doors   (d)
 x3  = horse power         (ps)
 

 we propose to fit a model of the form
 

 y b b x b x b x
^

= + + +0 1 1 2 2 3 3 (3.1)
 
 
 When applying regression models (Hedonic regression) to a car index it is usual to fit a semilogarithmic
form as it has been proven to fit the data best. That is
 

 log
^

e y b b x b x b x= + + +0 1 1 2 2 3 3 (3.2)
 
 This model relates the logarithm of the price of a new car to absolute values of the characteristics. Natural
logarithms are used , because in such a model  a b coefficient, if multiplied by a hundred measures, will
provide an estimate of the percentage increase in price due to a one unit change in the particular
characteristic or “quality” , holding the level of the other characteristics constant.
 
 Using the LINEST function in EXCEL (or PROC REG in SAS) the following estimates for the b
coefficients are obtained when the above model is applied to the data in Table 1.
 

 log .43 . . .
^

e y x x x= + + +8 0 000436 0 033094 0 0036051 2 3 (3.3)
 
 
 The interpretation of the above equation is as follows. Keeping the level of other characteristics constant
 

• A one unit change in cylinder capacity gives a 0.0436% increase in price
 

• A one unit change in the number of doors gives a 3.3094% increase in price
 

• A one unit change in brake horsepower gives a 0.3605% in crease in price.
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 3.2 The inclusion of categorical variables
 
 The next step is to incorporate power steering, ABS system and air bags into the model. The variables are
categorical variables: their numeric values 1, and 0 stand for the inclusion or exclusion of these features
in a car.
 
 The semilogarithmic form of the model is now.
 

 88776655443322110

^
log xbxbxbxbxbxbxbxbbye ++++++++= (3.4)

 
 where

 x4  = weight         x7  = ABS system      (abs)
 x5  = length         x8  = air bags             (ab)
 x6  = power steering  (pst)

 
 Using the LINEST function in EXCEL (or PROC REG in SAS) the following estimates for the b
coefficients are obtained when the above model is applied to the relevant data in Table 1.
 
 
 Equation (3.5)

 80075.07113.060649.050054.040015.030023.020197.01000089.037.9
^

log xxxxxxxxye −++−++++=

 
 .
 
 The regression coefficients obtained from Equation (3.5) are interpreted as follows. Keeping the level of
other characteristics constant
 

• A one unit change in cylinder capacity gives a 0.0089% increase in price.
 

• A one unit change in the number of doors gives a 1.97% increase in price.
 

• A one unit change in brake horse power gives a 0.23.% increase in price.
 

• A one unit change in weight (kg) gives a 0.15% increase in price.
 

• A one unit change in the length (cm) gives a 0.54% decrease in price
 

• The inclusion of power steering gives a 6.49% increase in price.
 

• The inclusion of an ABS system gives an 11.26% increase in price.
 

• The inclusion of air bags gives a 0.75% decrease in price
 
 
 In Section 4 below it is shown that there is strong collinearity between weight and length in the above
regression model and, therefore, length will be omitted from the model.
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 The regression model now becomes

 log
^

e y b b x b x b x b x b x b x b x= + + + + + + +0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 (3.6)
 where

 x4  = weight         
 x5  = power steering  (pst)
 x6  = ABS system      (abs)
 x7  = air bags             (ab)

 
 Using the LINEST function in EXCEL (or PROC REG in SAS) the following estimates for the b
coefficients are obtained when the above model is applied to the relevant data in Table 1.
 

 log .43 . . . . . . .
^

e y x x x x x x x= + + + + + + −8 0 00008 0 015 0 002 0 0005 0 107 0 079 0 0341 2 3 4 5 6 7 (3.7)
 

 
 The interpretation of the above equation is as follows. Keeping the level of other characteristics constant
 

• A one unit change in cylinder capacity gives a 0.008% increase in price.
 

• A one unit change in the number of doors gives a 1.5% increase in price.
 

• A one unit change in brake horse power gives a 0.2% increase in price.
 

• A one unit change in weight (kg) gives a 0.05% increase in price.
 

• The inclusion of power steering gives a 10.7% increase in price.
 

• The inclusion of an ABS system gives a 7.9% increase in price.
 

• The inclusion of an airbag gives a 3.4.% decrease in price

Section 4 below shows that collinearity in not an issue in the regression model described in Equation
(3.7).

The output of the regression results for Equation (3.7) is displayed below. All the regression coefficients
are significantly different from zero with t statistics (t ratios) greater than 0.8. An R-square of 96%
indicates that  almost all of the variation in the price of new cars is explained by the selected predictors.
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Model: MODEL1
Dependent Variable: P

Analysis of Variance

Source DF Sum of
Squares

Mean
Square

F Value Prob>F

Model 7 1.04297 0.14900 71.462 0.0001
Error 20 0.04170 0.00208
C Total 27 1.08467

Root MSE 0.04566 R-square 0.9616
Dep Mean 9.49107 Adj R-sq 0.9481
C.V. 0.48110

Parameter Estimates

Variable DF
Parameter
Estimate

Standard Error T for H0:
Parameter=0 Prob > |T|

INTERCEP 1 8.425031 0.14860470 56.694 0.0001
CC 1 0.000077042 0.00009113 0.845 0.4079
D 1 0.015308 0.01319688 1.160 0.2597
PS 1 0.002427 0.00073364 3.309 0.0035
W 1 0.000487 0.00017666 2.758 0.0121
PST 1 0.106869 0.03691626 2.895 0.0090
ABS 1 0.079148 0.04351762 1.819 0.0840
AB 1 -0.033942 -0.02419823 1.403 0.1761

Variable DF Variance
Inflation

INTERCEP 1 0.00000000
CC 1 7.28722659
D 1 1.45581431
PS 1 3.01093302
W 1 10.43520369
PST 1 2.68458544
ABS 1 5.83911068
AB 1 1.92580528
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As part of any statistical analysis is to stand back and criticise the regression model and its assumptions.
This phase is called model diagnosis. If under close scrutiny the assumptions seem to be approximately
satisfied and the model can be used to predict and understand the relationship between response and the
response and the predictors.

In Section 5 below the regression model, as described in Equation (3.7), is proven to be adequate for
predicting and to understanding the relationship between response and predictors for the new car data
described in Table 1.

3.3 Classic Definition of Hedonic Regression

As we can see above, the hedonic hypothesis assumes that a commodity (e.g. a new car) can be viewed as
a bundle of characteristics or attributes (e.g. cc, horse power, weight, etc.) for which implicit prices can
be derived from prices of different versions of the same commodity containing different levels of specific
characteristics.

The ability to desegregate a commodity and price its components facilities the construction of price
indices and the measurement of price change across versions of the same commodity. A number of issues
arise when trying to accomplish this.

1. What are the relevant characteristics of a commodity bundle?
1. How are the implicit (implied) prices to be estimated from the available data?
1. How are the resulting estimates to be used to construct price or quality indices for a particular

commodity?
1. What meaning, if any, is to be given to the resulting constructs?
1. What do such indices measure?
1. Under what conditions do they measure it unambiguously?

Much criticism of the hedonic approach has focused on the last two questions, pointing out the restrictive
nature of the assumptions required to establish the “existence” and meaning of such indices. However,
what the hedonic approach attempts to do is provide a tool for estimating “missing” prices, prices of
particular bundles not observed in the base or later periods. It does not pretend to dispose of the question
of whether various observed differences are demand or supply determined, how the observed variety of
model in the market is generated, and whether the resulting indices have an unambiguous interpretation
of their purpose.
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4 Collinearity

Suppose that in the car data (see Table 1) the car weight in pounds in addition to the car weight in
kilograms is used as a predictor variable. Let  x1  denote the weight in kilograms and let x2  denote the
weight in pounds. Now since one kilogram is the same as 2.2046 pounds,

( ) ( ) x1 1β β β β β β γ+ = + = + =2 2 1 1 2 1 1 2 1 12 2046 2 2046x x x x x. .

with γ β β= +1 22 2046. . Here γ  represents the “true” regression coefficient associated with the
predictor weigh when measured in pounds. Regardless of the value of γ , there are infinitely many
different values for β1  and  β 2  that produce the same value for γ . If both x1  and  x2  are included in
the model, then  β1  and  β 2  cannot be uniquely defined and cannot be estimated from the data.

The same difficulty occurs if there is a linear relationship among any of the predictor variables. If some
set of predictor variables x x xm1 2, ,K  and some set of constants c c cm1 2 1, ,K +  not all zero

c x c x c x cm m m1 1 2 2 1+ + + = +K (4.1)

for all values of x x xm1 2, ,K  in the data set, then the predictors x x xm1 2, ,K are said to be collinear.
Exact collinearity rarely occurs with actual data, but approximate collinearity occurs when predictors are
nearly linearly related. As discussed later, approximate collinearity also causes substantial difficulties in
regression analysis. Variables are said to be collinear even if Equation (4.1) holds only approximately.
Setting aside for the moment the assessment of the effects of collinearity, how is it detected?

The search for collinearity between predictor variables is assessed by calculating the correlation
coefficients between all pairs of predictor variables and displaying them in a table.

Table 4: Correlation table for predictor variables

cc d ps w l pst abs
d 0.42754

ps 0.75827 0.23098

w 0.90567 0.42623 0.78991

l 0.91509 0.40526 0.78197 0.98931

pst 0.59539 0.43901 0.48691 0.67540 0.60361

abs 0.82684 0.2129 0.63492 0.80978 0.86680 0.34752

ab 0.55255 0.7412 0.46523 0.52271 0.58908 0.34995 0.64500

The above table of correlations are only between pairs of predictors and cannot assess more complicated
(near) linear relationships among several predictors and expressed in Equation (4.1). To do so the
multiple coefficient of determination, Rj

2  , obtained from regressing the jth predictor variable on all the

other predictor variables is calculated. That is, x j  is temporarily treated as the response in this

regression. The closer this Rj
2  is to 1 (or 100%) , the more serious the collinearity problem is with

respect to the jth predictor.
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4.1 Effects on parameter estimates.

The effect of collinearity on the estimates of regression coefficients may be best seen from the expression
giving the standard errors of those coefficients. Standard errors give a measure of expected variability for
coefficients – the smaller the standard error the better the coefficient tends to be estimated. It may be
shown that the standard error of the jth coefficient, bj , is given by

( )
( )

se b s
R

x x
j

j
ij j

i

n=
−

⋅

−
=
∑

1
1

1
2 2

1

(4.2)

where, as before, Rj
2  is the R2  value obtained from regressing the jth predictor variable on all other

predictors. Equation (4.2) shows that, with respect to collinearity, the standard error will be smallest
when Rj

2  is zero, that is, the jth predictor is not linearly related to the other predictors. Conversely, if Rj
2

is near 1, then the standard error of  bj  is large and the estimate is much more likely to be far from the

true value of  β j .

The quantity

VIF
Rj

j
=

−
1

1 2 (4.3)

is called the variance inflation factor (VIF).  The large the value of VIF for a predictor x j  , the more

severe the collinearity problem. As a guideline, many authors recommend that a VIF greater than 10
suggests a collinearity difficulty worthy of further study. This is equivalent to flagging predictors with
Rj

2  grater than 90%.

Table 5 below presents the results of the collinearity diagnostics for  the regression model outlined in
Equation 3.5  (using PROC REG in SAS).

Table 5   Variance Inflation Factors (VIP)

cc 7.36028546
d 1.54999525
ps 3.07094954
w 221.98482270
l 246.25396926
pst 4.73427617
abs 7.87431815
ab 3.28577252

From Tables 4 and 5 above it is obvious that there is a strong liner relationship between the predictor
variables w and l in the regression model in Equation (3.5) and they are collinear. To over come this
collinearity problem the predictor variable l (length) will be omitted from the regression model.

4.2  Effects on inference

If collinearity affects parameter estimates and their standard errors then it follows that t- ratios will also
be affected.
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4.3  Effects on prediction

The effect of collinearity on prediction depends on the particular values specified for the predictors. If the
relationship among the predictors used in fitting the model are preserved in the predictor values used for
prediction, then the predictions will be little affected by collinearity. ON the other hand, if the specified
predictor values are contrary to the observed relationships among the predictors in the model, then the
predictions will be poor.

4.4  What to do about collinearity

The best defence against the problems associated with collinear predictors is to keep the models as simple
as possible. Variables that add little to the usefulness of a regression model should be deleted from the
model. When collinearity is detected among variables, none of which can reasonably be deleted from a
regression model, avoid extrapolation and beware of inference on individual regression coefficients.

Table 6 below presents the results of the collinearity diagnostics for  the regression model outlined in
Equation 3.7  (using PROC REG in SAS).

Table 6   Variance Inflation Factors (VIP)

cc 7.28722659
d 1.45581431
ps 3.01093302
w 10.43520369
pst 2.68458544
abs 5.83911068
ab 1.92580528

Note that the predictor variable w (weight) does not have a VIP value sufficiently greater than 10 to
warrant exclusion from the model. Tables 4 and 6 above indicate that the regression model as described
in Equation (3.7) does not have a problem with collinearity among the variables.
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5 Model diagnostics

All the regression theory and methods presented above rely to a certain extent on the standard regression
assumptions. In particular it was assumed that the data were generated by a process that could be
modelled according to

 y x x x ei k ik i= + + + + +β β β β0 1 1 2 2 L     for i = 1,2, ….,n      (5.1)

where the error  terms e e en1 2, , ,K  are independent of one another and are each normally distributed
with mean 0 and common standard deviation σ  . But in any practical situation , assumptions are always
in doubt and can only hold approximately at best. The second part of any statistical analysis is to stand
back and criticise the model and its assumptions. This phase is frequently called model diagnosis. If
under close scrutiny the assumptions seem to be approximately satisfied, then the model can be used to
predict and to understand the relationship between  response and predictors. Otherwise, ways to improve
the model are sought, once more checking the assumptions of the new model.  This process is continued
until either a satisfactory model is found or it is determined that none of the models are completely
satisfactory. Ideally, the adequacy of the model is assessed by checking it with a new set of data.
However, that is a rare luxury; most often diagnostics based on the original set must suffice.

The study of diagnostics begins with the important topic of residuals.

5.1 Residuals – standardised residuals

Most of the regression assumptions apply to the error terms e e en1 2, , ,K . However the error terms
cannot be obtained, and the assessment of the errors must be based on the residuals obtained as the actual
value minus the fitted value that the model predicts with all unknown parameters estimated for the data.
Recall that in symbols the ith residual is

e y b b x b x b xi i k ik
^

= − − − − −0 1 1 2 2 L     for i = 1,2, ….,n      (5.2)

To analyse residuals (or any other diagnostic statistic), their behaviour when the model assumption do
hold and, if possible, when at least some of the assumptions do not hold must be understood. If the
regression assumptions all hold, it my be shown that the residuals have normal distributions with 0
means. It may also be shown that the distribution of the ith residual has the standard deviation σ 1− hii ,
where hii  is the ith diagonal element of the “hat matrix” determined by the values of the set of predictor
variables. (See Appendix I), but the particular formula given there is not needed here. In the simple case
of  a single predictor  model it may be shown that

( )

( )
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x x

x x
ii

i

j
j

n= +
−

−
=
∑

1
2

2

1

(5.3)

Note in particular that the standard deviation of the distribution of the ith residual is not σ , the standard
deviation of the distribution of the ith error term ei  . It may be shown that , in general,

1 1
n

hii≤ ≤ (5.4)

so that

0 1 1 1
≤ − ≤ − ≤σ σ σh

nii (5.5)
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It may be seen from Equation (5.3) and also argued in the general case that  hii  is at its minimum value,
1/n, when the predictors are all equal to their mean values.  On the other hand, hii approaches its
maximum value, 1, when the predictors are very far from their mean values. Thus residuals obtained from
data points that are far from the centre of the data set will tend to be smaller than the corresponding error
terms. Curves fit by least squares will usually fit better at extreme values for the predicators than in the
central part of the data.

Table 3 below, displays the   hii  values (along with many other diagnostic statistics that will be
discussed) for the regression of  log (price) on the seven predicators described above (cc, d, ps, w, l, pst,
abs  and ab).

Table 3: Diagnostic Statistics for Regression Model

Dep Var Predict Standard t- Hat Diag Cook's
Obs P Value Residual Residual Residual hii D

1 9.5000 9.4673 0.03270 0.772 0.7644 0.1408 0.012
2 9.6800 9.6865 -0.00647 -0.156 -0.1518 0.1704 0.001
3 9.2900 9.2477 0.04230 1.207 1.2213 0.4099 0.126
4 9.1900 9.1546 0.03540 0.981 0.9799 0.3767 0.073
5 9.6700 9.6622 0.00780 0.188 0.1833 0.1739 0.001
6 9.4000 9.4753 -0.07530 -1.814 -1.9346 0.1730 0.086
7 9.7000 9.6775 0.02250 0.554 0.5441 0.2094 0.010
8 9.4700 9.4466 0.02340 0.571 0.5615 0.1974 0.010
9 9.2000 9.2328 -0.03280 -1.022 -1.0232 0.5059 0.134

10 9.6900 9.6865 0.00353 0.085 0.0827 0.1704 0.000
11 9.1900 9.1663 0.02370 0.608 0.5978 0.2712 0.017
12 9.5100 9.5122 -0.00216 -0.053 -0.0512 0.1870 0.000
13 9.7100 9.6865 0.02350 0.566 0.5558 0.1704 0.008
14 9.0800 9.1886 -0.10860 -2.706 -3.3131 0.2279 0.270
15 9.4700 9.4466 0.02340 0.571 0.5615 0.1974 0.010
16 9.6200 9.6222 -0.00220 -0.083 -0.0809 0.6615 0.002
17 9.4500 9.4447 0.00528 0.136 0.1321 0.2707 0.001
18 9.8000 9.7690 0.03100 0.877 0.8714 0.4005 0.064
19 9.4800 9.4237 0.05630 1.389 1.4241 0.2106 0.064
20 9.7200 9.7536 -0.03360 -0.830 -0.8228 0.2132 0.023
21 9.1900 9.1828 0.00721 0.207 0.2021 0.4189 0.004
22 9.4200 9.4677 -0.04770 -1.125 -1.1329 0.1367 0.025
23 9.7100 9.7310 -0.02100 -0.503 -0.4938 0.1646 0.006
24 9.4600 9.4864 -0.02640 -0.725 -0.7160 0.3618 0.037
25 9.3000 9.2998 0.000171 0.006 0.0055 0.5679 0.000
26 9.6800 9.7051 -0.02510 -0.592 -0.5821 0.1409 0.007
27 9.5900 9.6226 -0.03260 -1.302 -1.3267 0.6988 0.492
28 9.5800 9.5041 0.07590 1.826 1.9500 0.1723 0.087

To compensate for the differences in dispersion among the distributions of the different residuals, it is
usually better to consider the standardised residuals defined by

ith  standardised residual = e
s hii

^

1−
  for  i = 1, 2, …, n     (5.6)



21

 Notice that the unknown σ has been estimated by s. If n is large and if the regression assumptions are all
approximately satisfied, then the standardised residuals should behave about like standard normal
variables. Table 3 also lists the residuals and standardised residuals for all 28 observations.

Even if all the regression assumptions are met, the residuals (and the standardised residuals) are not
independent. For example, the residuals for a model that includes an intercept term always add to zero.
This alone implies they are negatively correlated. It may be shown that, in fact, the theoretical correlation
coefficient between the ith and jth residuals (or standard residuals) is

( )( )
−

− −

h

h i h

ij

ii jj1
(5.7)

where hij is the ijth element of the hat matrix. Again, the general formula for these elements is not

needed here. For the simple single-predictor case it may be shown that
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(5.8)

From Equations (5.3), (5.7) and (5.8) (and in general) we see that the correlations will be small except for
small data sets and/or residuals associated with data points very far from the central part of the predictor
values. From a practical point of view this small correlation can usually be ignored, and the assumptions
on the error terms can be assessed by comparing the properties of the standardised residuals to those of
independent, standard normal variables.

5.2 Residual Plots

Plots of the standardised residuals against other variables are very useful in detecting departures from the
standard regression assumptions. Many of the most common problems may be seen by plotting
(standardised) residuals against the corresponding fitted values. In this plot, residuals associated with
approximately equal-sized fitted values are visually grouped together. In this way it is relatively easy to
see if mostly negative (or mostly positive) residuals are associated with the largest and smallest fitted
values. Such a plot would indicate curvature that the chosen regression curve did not capture. Figure 5
displays the plot of Standardised Residuals versus fitted values for the new car data.

Figure 5: Scatterplot of Standardized Residual vs. Fitted from new 
car data
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The residual plot in Figure 5 above displays a mixture of positives and negative and thus  shows no
general inadequacies.

Another important use for the plot of residuals versus fitted values is to detect lack of common standard
deviation among different error terms. Contrary to the assumption of common standard deviation, it is not
uncommon for variability to increase as the values for response variables increase.  This situation does
not occur for the data contained in Figure 5.

5.3  Outliers

In regression analysis the model is assumed to be appropriate for all the observations. However, it is not
unusual for one or two cases to be inconsistent with the general pattern of the data in one way or another.
When a single predictor is used such cases may be easily spotted in the scatterplot data. When several
predictors are employed such cases will be much more difficult to detect. The non conforming data points
are usually called outliers.  Sometimes it is possible to retrace the steps leading to the suspect data point
and isolate the reason for the outlier. For example, it could be the result of a recording error, If this is the
case the data can be corrected. At other times the outlier may be due to a response obtained when
variables not measured were quite different than when the rest of the data were obtained.  Regardless of
the reason for the outlier, its effect on regression analysis can be substantial.

Ouliers that have unusual response values are the focus here. Unusual responses should be detectable by
looking for unusual residuals preferably by checking for unusually large standardised residuals. If the
normality of the error terms is not in question, then a standard residual larger than 3 in magnitude
certainly is unusual and the corresponding case should be investigated for a special cause for this value.

5.3.1  Studentized Residuals  ( t – residuals)

A difficulty with looking at standardised residuals is that an outlier, if present, will also affect the
estimate of  σ  that enters into the denominator of the standardised residual. Typically, an outlier will
inflate s and thus deflate the standardised residual and mask the outlier. One way to circumvent this
problem is to estimate the value of  σ  use in calculating the ith standard residual using all the data except
the ith case.  Let ( )s i  denote such an estimate where the subscript (i) indicates that the ith case has been

deleted.  This leads to the studentized residual defined by

ith  studentized residual = 
( )

e
s h

i

i ii

^

1−
  for  i = 1, 2, …, n     (5.6)

The next question to be asked is “how do these diagnostic methods work the new car data?”. Table 3 lists
diagnostic statistics for the regression model as applied to the new car data. Notice that there is only  case
(observation No. 14) where the standardised and studentized residuals have a significant difference and
where the standard or studentized residuals are above 3 in magnitude. These results indicate that, in
general, there are no outlier problems associated with the regression model described in  (3.5) above.

 5.4 Influential Observations

The principle of ordinary least squares gives equal weight to each case. On the other hand, each case does
not have the same effect on the fitted regression curve. For example, observations with extreme predictor
values can have substantial influence on the regression analysis. A number of diagnostic statistics have
been invented to quantify the amount of influence (or at least potential influence) that individual cases
have in a regression analysis. The first measure of influence is provided by the diagonal elements of the
hat matrix.
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5.4.1  Leverage

When considering the influence of individual cases on regression analysis, the ith diagonal element of the
hat matrix hii   is often called the leverage for the ith case, which means a measure of the ith data point’s
influence in a regression with respect to the predicator variables. In what sense does hii  measure

influence? It may be shown that y h y h y y y hi ii i ij j i i iij i

^ ^
= + =

≠∑   so that δ δ  , that is  hii is the rate of

change of the ith fitted value with respect to the ith response  value. If  hii  is small, then a small change
in the ith response results in a small change in the corresponding fitted value. However, if hii  is large,

then a small change in the ith response produces a large change in the corresponding yi
^

.

Further interpretation of  hii  as leverage is based on the discussion in Section 5.1. There is was shown

that the standard deviation of the sampling distribution of the ith residual is not σ   but σ 1− hii .
Furthermore, hii  is equal to its smallest value 1/n, when all the predicators are equal to their mean
values.  These are the values for the predictors that have the least influence on the regression curve and
imply, in general, the largest  residuals. On the other hand, if the predictors are far from their means, then
hii approaches its largest value of 1 and the standard deviation of such residuals is quite small. In turn
this implies a tendency for small residuals, and the regression curve is pulled toward these influential
observations.

How large might a leverage value be before a case is considered to have large influence? It may be
shown algebraically that the average leverage over all cases is (k+1)/n, that is,

1 1

1
n

h k
nii

i

n

=
∑ =

+ (5.10)

where k is the number of predictors in the model. On the basis of this result, many authors suggest
making cases as influential if their leverage exceeds two or three time (k+1)/n.

For the new car data displayed in Table 3 and using the regression model as described in Equation (3.7)
we estimate;

1. k = 7
2. (k+1)/n  = 8/28   = 0.2857
3. 2 x (k+1)/n         =  0.5714
4. 3 x (k+1)/n         =  0.8571

In Table 3 only two observations (No.’s 16 and 27) are above the 2 x (k+1)/n threshold and none of the
observations are above the 3 x (k+1)/n threshold.  This result indicates that there are no observations with
extreme predictors value impacting on the slope of the fitted values and hence none of the observation
have undue influence on the regression results.



24

5.5 Cook’s Distance

As good as large leverage values are in detecting cases influential on the regression analysis, this
criterion is not without faults. Leverage values are completely determined by the values of the predictor
variables and do not involve the response values at all. A data point that possesses large leverage but also
lies close to the trend of the other data will not have undue influence on the regression results.

Several statistics have been proposed to better measure the influence of individual cases. One of the most
popular is called Cook’s Distance, which is a measure of a data point’s influence on regression results
that considers both the predictor variables and the response variables.  The basic idea is to compare the
predictions of the model when the ith case is and is not included in the calculations.

In particular, Cook’s Distance, Di , for the ith case is defined to be
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(5.11)

where ( )y j i
^

  is the predicted  or fitted value for case j using the regression curve obtained when i is

omitted.  Large values of Di  indicate that case i  has large influence on the regression results, as then

( )y yj j i
^ ^

 and   differ substantially for many cases. The deletion of a case with a large value of Di will

alter conclusions substantially. If  Di   is not large, regression results will not change dramatically even if
the leverage for the ith case is large. In general, if the largest value of Di is substantially less than 1, then
no cases are especially influential. On the other hand, cases with Di greater than 1 should certainly be
investigated further to more carefully assess their influence on the regression analysis results.

In Table 3 only one observation No. 27 has the largest value of Cook’s Distance, 0.722 and leverage
value, 0.6988. However, neither value is high enough to influence the regression analysis results.

What is next once influential observations have been detected? If the influential observation is due to
incorrect recording of the data point, an attempt to correct that observation should be made and the
regression analysis rerun. If the data point is known to be faulty but cannot be corrected, then that
observation should be excluded for the data set. If it is determined that the influential data point is indeed
accurate, it is likely that the proposed regression model is not appropriate for the problem at hand.
Perhaps an important predictor variable has been neglected or the form of the regression curve is not
adequate.

5.6  Transformations

So far a variety of methods for detecting the failure of some of the underlying assumptions of regression
analysis have bee discussed. Transformations of the data, either of the response and/or the predictor
variables, provide a powerful method for turning marginally useful regression models into quire
valuable models in which the assumptions are much more credible and hence the predictions much more
reliable. Some of the most common and most useful transformations include logarithms, square roots, and
reciprocals. Careful consideration of various transformations for data can clarify and simplify the
structure of relationships among variables.

Sometimes transformations occur “naturally” in the ordinary reporting of data. As an example, consider a
bicycle computer that displays , among other things, the current speed of the bicycle in miles per hour.
What is really measured is the time it takes for each revolution of the wheel. Since the exact
circumference of the tire is stored in the computer, the reported speed is calculated as a constant divided
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by the measured time per revolution of the wheel. The speed reported is basically a reciprocal
transformation of the measured variable.

As a second example, consider petrol consumption in a car. Usually these values are reported in miles per
gallon. However, they are obtained by measuring the fuel consumption on a test drive of fixed distance.
Miles per gallon are then calculated by computing the reciprocal of the gallons per mile figure.

A very common transformation is the logarithm transformation. It may be shown that a logarithm
transformation will tend to correct the problem of non constant standard deviation in case the standard
deviation of  ei  is proportional to the mean of yi . If the mean of y doubles, then so does the standard
deviation of e and so forth.
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6. Sampling Distributions and Significance testing

6.1 Introduction

This section discusses the standardisation of the sample mean. Introducing notation, let y y yn1 2, ,L

denote a sample of n numbers, let y  denote the mean of the sample, and let s denote the sample standard
deviation. Assume the sample is from a process or from a very large population so that in either case the
question of a finite population correction can be ignored. The long-run process or population mean is
denoted by µ , which is the theoretical mean. Then the sample standard error of the sample mean is

s
n

and the standardised mean is

( )
t y

s
n

n y

s
=

−
=

−µ µ
(6.1)

This is the difference between the sample and theoretical means divided by the sample standard error.
Usual statistical notation for this quantity is the letter t, and the quantity is known as the t statistic. Many
statistics are referred to as t statistics because the idea of dividing the difference between a sample and
theoretical quantity by a sample standard error is pervasive in statistical applications.

6.2  t - distribution

If we let y y yn1 2, ,L  denote a sample of size n drawn randomly from a normal distribution with mean µ

and standard deviation σ . Let y and s denote the sample mean and standard deviation. Then the sampling
distribution of the t statistics defined in the equation above is the t distribution with n-1 degrees of
freedom (denoted by v).

A well know theorem indicates that

1. A t distribution with n-1 degrees is symmetric and mound shaped.
2. Provided n-1 ≥ 3, the standard deviation of the t distribution is ( ) ( )n n− −1 3 .
3. When n-1=1, the mean and standard deviation of the t distribution does not exist.
4. When n-1=2, the mean exists but the standard deviation does not.
5. As n grows large without bound (i.e. n > 30), the t distribution converges to the standard normal

distribution.

6.3 Application to significance testing

Significance testing is a process of probabilistic inference that uses sampling distributions to compare
behaviour in data with theories about the process that generated the data. Consider a situation in which
data from a process in statistical control (i.e. the various dimension of a process are within in acceptable
limits) whose cross-sectional distribution is normal are drawn, the value of the long-run process mean,
denoted by µ, is in doubt, and the value of the long-run process standard deviation σ is not known. One
way to approach inference about µ is to venture a guess, called a theory or hypothesis, about the value of
µ. After the data are collected, the value of the guess is compared with the value of the sample mean.
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Because sample means vary from sample to sample a criterion for determining whether a specific sample
mean deviates from the guess by more than an amount that can be attributed to natural sampling variation
is needed. The t statistic in equation (6.1) above and its associated t distribution with n-1 degrees of
freedom provide such criterion.

The numerical value of the guess is called the null hypothesis and is denoted by H0 . If µ 0  denotes the
numerical guess at µ , then H0 0:µ µ=  defines the null hypothesis. Once the null hypothesis is defined,
the notation H0  is used to refer to it.

To conduct a test of significance, a test statistic that forms a comparative link between some function of
the data and the long-run process mean µ is defined. The analyst must be able to state the sampling
distribution of the test statistic when the null hypothesis is assumed to be true. Saying that the null
hypothesis is true means that a “good guess” has been made, that is, that µ 0  and the actual long-run
value of µ coincide.

The test statistic must be constructed so that if a good guess is not made, the statistic sends an appropriate
signal, which is exactly what the t statistic does. The logic of this is as follows. Because the sampling
distribution of the t statistic is known when H0  is true, an interval of values expected to be observed,
called the interval of plausible values, can be constructed. Now if after the data are collected and the
value of the t statistic

( )
t

y
s
n

n y

s
=

−
=

−µ µ0 0
(6.2)

is computed, and the t statistic falls outside the interval of plausible values, then there is a reason to
suspect that the hypothesis was not really a good guess. Notice that the value of t is obtained by dividing
the difference between the sample mean obtained from the data and the null hypothesis value µ 0  by the
sample standard error of the mean.

When the value of the t statistic computed for actual data falls outside the interval of plausible values, it
has fallen into the critical region of the test and the value is statistically significant. If the analyst believes
the signal the test gives and concludes that the hypothesis is not a good guess, then the null hypothesis is
rejected.  The implication of this language is that if the actual value of the t statistic falls in the interval of
plausible values, then the null hypothesis is not rejected.

The interval of plausible values plays a fundamental role. Values of the t statistic not in this interval are
deemed to be “critical” and to signal rejection of the null hypothesis. The interval of plausible values is
chosen to make it unlikely that the test statistic rejects the null hypothesis when it is true. More formally,
the interval of plausible values is chosen so that when the null hypothesis is true, an acceptably small
proportion of the possible t statistics falls outside the interval, according to the sampling t distribution
with n-1 degrees of  freedom.

Critical regions are estimated using statistical tables know as t – tables. Using these tables it is possible to
estimate that when the null hypothesis was assumed to be true, 99% of the possible t statistic values were
between – 4.604 and 4.604, and the interval between these values is used as the interval of plausible
values. The probability of rejecting a true null hypothesis was therefore only 0.01 (or 1%). Since only
one out of a hundred possible t statistic values would lead to rejecting a true hull hypothesis, the analyst
would feel confident that the test of significance is not misleading. Put another way, if a t statistic value
outside the interval of plausible values (and therefore inside the critical region) is observed, this justifies
doubts about the truth of the null hypothesis. The 1% probability that the t statistic falls in the critical
region is called the significance level of the test. It is a measure of the risk of incorrectly concluding that
the null hypothesis is false.
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The risk of rejecting a true null hypothesis is only one kind of risk. Another is the risk of not rejecting a
false null hypothesis. It is a trade-off between these two risks that forces analysts to use nonzero
significance levels. A test that never rejects a null hypothesis cannot signal that the guess at µ is no good.
Analysts run some risk of rejecting a true null hypothesis to discover a false one. Such is the trade-off
inherent n trying to discover new truth from imperfect or incomplete data.

There is no completely objective method for choosing the significance level of a significance test. The
prevailing practice is to choose significance levels more or less by convention, the most common choices
being 10%, 5% and 1%. The smaller the significance level, the larger the interval of plausible values, and
the larger the t statistic has to be, in absolute value, to fall in the critical region and signal rejection of the
null hypothesis.

Three types of errors are possible in significance testing

1. Type I,   this is the error of rejecting a true null hypothesis. This means that the significance
level is the probability of committing a Type I error.

2. Type II,   this is the error in not rejecting a false null hypothesis.
3. Type III, this refers to answering an irrelevant question. In formulating problems analysts

usually try to define the problem in terms that make it easy to solve. Ding this creates the risk of
“defining away” the real problem, that is, setting up a problem that can be solved but whose
salient features do not match the real problem.

6.4 CHI-SQUARE  statistics

Pearsons Χ2  statistic is a measure of association (summarising relationships between categorical
variables) for multi-way tables. Pearson’s statistic is often referred to as a chi-squared statistic. Chi-
square is a transliteration of the mathematical symbol χ 2 , which is the Greek letter chi to the second
power. This notation is used to stand for the family of mathematical curves that describe the sampling
distribution of Pearson’s statistic under certain conditions. In particular the chi-squared distribution is
the approximate sampling distribution of Pearsons Χ2 statistic when the null hypothesis of no association
is true. Below we discuss the connection between χ 2 distributions and sample variances of samples from
the normal population.

For a two way table (i.e. a 2 x 2) the following notation is used

W
                                    W1                   W2                    Total

V1 a c a + c  = n1.
V V2 b d b + d  = n2.

Total a + b = n.1 c + d = n.2 a + b + c + d = n

The two categorical variables are V and W, the counts in each cell of the cross classification are denoted
by a, b, c and d, and the row, column, and grand totals are denoted by the n’s with appropriate subscripts.
The value of Pearson’s chi-squared statistic, denoted by Χ2  , is given by the formula

( )
( )( )( )( )Χ 2

2

1 2 1 2
=

−n ad bc
n n n n. . . .

(6.2)

It is to be noted that when there is association among the categorical variables the values of the Χ2  tend
to be larger, on the whole, than when there is not association among the variables. This principle is the
basis for a significance test in which the null hypothesis is that the categorical do not interact in the
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universe. When the null hypothesis is true and the table is 2 x 2, then the sampling distribution of Χ2  is
approximately χ 2  with 1 degree of freedom. In general an r x c table has degrees of freedom v=(r-1)(c-
1).  We know that if the variables do interact in the universe the Χ2  values will be large and so
sufficiently large values of Χ2  should be taken as evidence against the null hypothesis.

It can be shown theoretically that the 95th percentile of the  χ 2  distribution with 1 degree of freedom is
3.841. If a 5% significance level is desired, the null hypothesis is rejected whenever the value of  Χ2  is
grater that 3.841. If this rule is followed, there is a 5% risk of declaring a true null hypothesis false. It can
also be shown that the 99th percentile of the χ 2  distribution with 1 degree of freedom is 6.635, so if a 1%
significance level is desired, the null hypothesis is rejected whenever the value of  Χ2  is greater than
6.635. This information is read from a chi-squared distribution tables.

The mathematical theory for Pearson’s chi-squared statistic says that as the sample size , n, gets larger,
the sampling distribution of  Χ2  becomes more nearly like a  χ 2  distribution with 1 degree of freedom,
provided the null hypothesis of no association is true. This type of statement also occurs in the central
limit effect, which guarantees approximate normality of totals and means, provided the sample size is
large enough.  A rough guideline is “do not rely on the χ 2  approximation unless the sample size is at
least 50 and all the cell frequencies are at least 5.

Another thorny question in applications of Pearson’s chi-squared statistic is that of sampling design. The
theory discussed above assumes simple random sampling with replacement, but in practice this design is
rare. Research on complex sampling designs show clearly that Pearson’s Χ2  statistic has different
sampling distributions when different sampling designs are used, and the differences seriously affect the
significance levels of significance tests. Because of this, Χ2  should be used with cautiously when making
probabilistic inferences.

6.5 F statistics

F statistics are used when probabilistic inferences about sources of variation are made.  These inferences
are called analysis of variance. An analysis of variance is the output from a regression command.

In mathematical theory of statistics a random quantity has an F distribution with  v1  and  v2  degrees of
freedom if it is a ratio of two independent chi-squared random quantities divided by their degrees of
freedom. In symbols

F
U v
U v

= 1 1

2 2

where U1  and  U 2  are independent, v1  has a chi-squared distribution with v1  degrees of freedom and  U 2

has a chi-squared distribution with v2  degrees of freedom. The parameter  v1  is called the numerator
degrees of freedom; v2  the denominator degrees of freedom.

The mean and standard deviation of the F distribution with  v1  and  v2  degrees of freedom are

µ =
−

v
v

2

2 2
 and  ( )

( ) ( )
σ =

+ −

− −

2 2

2 4
2
2

1 2

1 2
2

2

v v v

v v v

Note that the mean does not exist if v2  is less than or equal to 2, and the standard deviation does not exist
if  v2  is less than or equal to 4.
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Tables of  F distributions are complicated because they must display distributions for each possible
combination of the numerator and denominator degrees of freedom. Access to computer software is
essential for practical uses of the F distribution. There is no use limiting yourself to the percentiles shown
in the typical tables.
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Appendix I  - The Matrix Approach to Multiple Regression

The multiple regression model that has been written as the n equations

y x x x ei k ik i= + + + + +β β β β0 1 1 2 2 L     for i = 1,2, ….,n      (A1)

may also be expressed very economically in vector-matrix notation. First define the column vectors

( ) ( )[ ] ( )
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and the matrix

( )( )

X =


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Then recalling the definition of matrix multiplication, Equations (A1) may be written compactly as

y X e= +β           (A2)

The principle of ordinary least squares says to estimate the components of β  by minimising the quantity

( ) [ ] ( ) ( )S y X y Xβ β β β β β= − − − − = − −
=
∑ y x xi i k ik
i

n

0 1 1
2

1

L
'           (A3)

This may be accomplished by solving the system of k+1 linear equations obtained from computing the
partial derivatives and setting

( )δ
δβ

βS = 0

This in turn yields the so-called normal equation

X X X y' 'β =           (A4)

Here X'     denotes the transpose of matrix X.

A proof using algebra (but not calculus) that a solution of the normal equations provides the least squares
estimates may be obtained as follows: Let b be any solution of the normal equations (A4). Then
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( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( )[ ] ( )[ ]

( ) ( ) ( )[ ] ( )

S y X y X

y Xb X b y Xb X b

y Xb y Xb X b X b

y Xb X b X b y Xb

'

β β β

β β

β β

β β

= − −

= − − − − − −

= − − + − −

+ − − + − −

  '

'

'

' '

    

But since b satisfies the normal equations (A4) it is easy to see that the final two “cross-products” terms
are each zero. Thus we have the identity

( ) ( ) ( ) ( )[ ] ( )[ ]S y Xb y Xb X b X b'β β β= − − + − −
'           (A5)

The first term on the right hand side of Equation (A5) does not involve β  ; the second term is the sum of
squares of the elements of the vector ( )X bβ − . This sum of squares can never be negative and is clearly
smallest (namely zero) when β = b .  Thus a solution to the normal equations will provide ordinary least
squares estimates of the components of β .

If the (k+1) x (k+1) dimensional matrix X X'  is invertible, then Equation (A4) has a unique solution
which may be written as

( )b X X X y' 1 '=
−

               (A6)

The column vector of fitted values is then

( )y Xb X X X X y
^ ' 1 '= =

−
(A7)

and the column vector of residuals is

( )e y y 1 X X X X y
^ ^ ' 1 '= − = −





−
(A8)

By direct calculation it is easy to see that the matrix  ( )H X X X' 1 '=
−

has the special property

H H H' =  so that  H is an idempotent matrix.  It may also be argued that H is a symmetric matrix so that
H H' =   . The matrix H is sometimes called the hat matrix since the observation vector y is pre-

multiplied by H to produce y
^

 (y hat). It is easy to show that 1-H is also symmetric and idempotent.

The estimate of σ  is then

( )s
n k n k n k

=
− −

=
−





−





− −
=

−
− −

e e
y y y y

y 1 H y
^' ^

^ ' ^
'

1 1 1
(A9)

with n-k-1 degrees of freedom.

Under the usual regression assumptions, it may be shown that the individual regression coefficient, bi  ,
has a normal distribution with mean β i  . The standard deviation of the distribution of bi  is given by σ
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times the square root of the ith diagonal element of the matrix ( )X X' −1
 . The standard error of bi  is

obtained similarly by replacing σ  by s. That is

( ) ( )se b si
ii

= 





−
X X'

1
(A10)

Let ( )x* = 1 1 2, , , ,* * *x x xkL  be a row vector containing specific values for the k predictor variables for

which we want to predict a future value for the response, y*  . The prediction is given by x b*  and the

prediction error is y* *= x b . The standard deviation of the prediction error can be shown to be

( )σ σy* *
* *'

−
−

= +x b
' 1

x X X x1      (A11)

The prediction standard error, denoted predse, is obtained by replacing  σ  by s in Equation (A11). That
is

( )predse s= +
−

1 x X X x' 1* *'                    (A12)

Finally, the breakdown of the total sum of squares may be expressed as

( ) ( )y y y y y y y y y y y y
' ^ ' ^ ^ ' ^

− − = −





−



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+ −



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−





       (A13)

          [Total SS    =  Regression SS + Residual SS]

with degrees of freedom n-1, k and n-k-1, respectively. Here y  is a column vector with the mean  y  in
all positions.
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