
ORBITAL ECCENTRICITY AND ITS EFFECT ON STABILITY             
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I generated values of stability, resulting in 
a scale from 0-1, where the most stable 
orbit (at eccentricity of 0) is equal to 1. I 
calculated the Pearson and Spearman 
Rank Coefficient between Eccentricity and 
Stability. It indicates a perfect negative 
monotonic relationship that occurs at an 
inconsistent rate. Though extremely close, 
the Pearson Coefficient is not perfect.

CATEGORISED STABILITY INDEX

Conclusion
In conclusion, eccentricity is very closely related to stability. Fluctuating Pearson Coefficients 
between stability descriptors show a degeneration in correlation as eccentricity increases. The 
distribution of datapoints along the stability descriptors shows that 50% of possible orbits lie 
within the stable range, 41% are moderately stable, and 9% are unstable. 

I successfully defined a scale that assigns a categorised value of stability to an orbit, taking into 
account the relative significance of each contributing factor. This index applies to the set of all 
possible orbits, regardless of size, or the central body. The variance in stability has been 
structured to be uniquely dependent on eccentricity. Eccentricity is the most important variable 
defining the values on the scale, with a coefficient of 52%.

Although comprehensive in its analysis, I believe this model could benefit from factoring in 
external gravitational forces, and including a more thorough definition of stability.

The stability index generated is efficient, and suitable for analysis of distant constellations and 
satellite insertion, as it comprehensively classifies stability with extremely limited 
computational workload, balancing practicality with accuracy. 

Determine the stability of an orbit of given eccentricity.

Evaluate whether a correlation exists between eccentricity and stability.

Formulate a scale that assigns a value of stability to a given orbit.

Break this scale into descriptive categories that classify stability. 

1. Escape Velocity: This is the velocity required for the body to escape the gravity of the planet.

2. Delta Velocity (Delta V): This refers to the extra velocity required to break the orbit, and allow the object to 
escape the gravity of the planet. It is the difference between the velocity at a given point and Escape Velocity.

3. Energy Distribution: This refers to the ratio of energy stored as potential or kinetic energy. The lowest, and 
therefore most stable percentage possible is 50%, at eccentricity of 0, as the orbit is circular.

Parameters Assessed

The coefficients from Multiple 
Regression Analysis on the Z-scores of 
the above variables are shown on the 
right. These quantify the relative 
importance of each factor, and negate 
the assumption of equal weighting.

Clearly, eccentricity is the most 
significant variable, with a relative 
importance of 52%.

Statistical Analysis
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The accompanying graph is the set of 
normalized values of the general datasets, 

plotted against the corresponding eccentricity. 
Varying 𝑅2 Values and the curved shape 

indicate that not all quantities are linearly 
related to eccentricity. Clearly, the stability 

index must account for this fluctuation. There is 
a tendency toward extremity at high 

eccentricities, indicating a rapid decrease in 
stability above ~ 0.85.

NORMALIZED VALUES AGAINST ECCENTRICITY

Fig. 2: Normalized Escape Velocity, Delta V and Energy Distribution against Eccentricity.

Fig. 3: Pie chart comparing the normalized 
Regression Coefficients for each variable.

The three variables defining an orbit are the semi-major axis (orbit dimensions), the central 
body (gravitational force), and the eccentricity (orbit shape). The system was simplified to two 
variables by calculating a representative sample of 100 orbits varying from eccentricity of 0 to 
0.99, for each combination of the other two parameters. One variable was changed at a time, 
analysing all planetary orbits in the solar system: first, changing the semi-major axis with the 
Sun as a constant body; then, changing the central body to each planet while maintaining a 
constant semi-major axis. 3 parameters were calculated independently in each case, 
explained in detail later. 1,800 orbits were simulated, split into 18 groups of 100 each; 9 for 
varying central body and 9 for varying axes.

Data Generation

I ran an ANOVA on each of the 3 parameters, analysing the 18 datasets 
of each to test the following hypothesis, where 𝛼 = 0.05 :  

 𝐻0: 𝜇𝐸𝑎𝑟𝑡ℎ = 𝜇𝑀𝑎𝑟𝑠 …  𝜇𝑃𝑙𝑢𝑡𝑜 (For all 18 simulations)  

 𝐻A: The means are not equal

Observed 𝑃-values for Escape Velocity and Delta V reject 𝐻0, 
indicating significant statistical difference. There was no difference 
between mean energy ratios.

I fitted a Linear Regression model to the two variables that rejected the 
null hypothesis, Escape Velocity and Delta V. The R2 value and Pearson 
Coefficient of 1 indicate perfect positive linear correlation.

I ran PCA on these sets, resulting in two constant covariance matrices of 1, proving equal weighting of all 
dimensions. I reduced all datapoints to one representative set by multiplying the 18 individual values for each 
eccentricity by the Eigenvector for PC1 and summing the products.

To verify the correlation of these general sets to the raw values, I used them as standards, and applied Chi-Square 
Goodness-of-Fit tests to each variable. The resultant p-values were all 1, validating perfect correlation to the 
general model. The line graph below shows a randomly selected set of values against the standard, and the equal 
𝑅2 values of each trendline.
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Escape Velocity

I selected the parameter with the highest standard deviation, 
Escape Velocity, to break the data into sections. K-means 
clustering was initially performed; however, the inflection point 
in the elbow graph at k=1 indicates it is not a suitable method. 0
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Using piecewise linear regression, two breakpoints were 
introduced, defining the initial guesses as half the distance 
between centroids of the earlier k=3. An iterative optimization 
approach using Excel Solver defined the most suitable 
breakpoints by minimizing Residual Sum of Squares (RSS). 

Elbow Plot

CAT EGO RIZ ED  ESCAP E V ELO C IT Y  AND  D ELTA V

Fig. 4: Elbow plot for k mean clustering

1. Firstly, I defined stability as resistance to perturbation, or simply how much force the orbit 
can take before the body breaks free. I selected the 3 parameters associated with this 
condition and calculated them independently by simulating each orbit in MATLAB R2016a.

2. I transformed the data into a general set of values that apply to all possible cases, reducing 
the dependent variable to eccentricity. ANOVAs and Linear Regression were used to interpret 
the data, and then PCA was applied to reduce dimensionality from 18 sets to just 1 for each 
parameter. Chi Square Goodness-of-Fit tests verified correlation.

3. The datasets were standardized, and Multiple Regression Analysis was performed on these 
Z-scores to generate regression coefficients and determine each variable’s relative 
importance. I used the Ordinary Least Squares Method, where  𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌. Equal 
weighting was assumed to generate values for the dependent variable of stability, and the 
coefficients were produced from this data.                                                                                   

4. Regression coefficients were normalized and defined as weights for each variable. Values of 
stability ranging from 0 to 1 were calculated for each eccentricity by summing the products 
of normalized regression coefficients and their associated  variables for each eccentricity.

5. To descriptively categorise this data, piecewise linear regression was used, introducing two 
breakpoints. Initial guesses were derived from k means clustering, and optimized by 
iteratively minimizing Residual Sum of Squares (RSS). 

I coded a MATLAB R2016a program to propagate all 1,800 orbit simulations. I imported the 
associated data to Excel spreadsheets, where it was analysed and used to generate graphs.

Linear regression models were fitted to 
each segment, and an F-test was 
performed to compare the piecewise 
model against a single linear regression 
model. The resulting F-statistic and p-
value validated a statistically significant 
improvement, where 𝛼 = 0.05.

These segments are stability categories, and represent 
the optimal splitting of the curve into three parts, resulting 
in the highest possible 𝑅2 values for each segment.

Fig. 5: Normalized Delta V and Escape Velocity broken into categories 
with corresponding R2  values against Eccentricity

Fig. 6: Categorised Stability Index with R2  values against Eccentricity
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Fig. 1: A randomly selected dataset from each parameter plotted against the general dataset obtained from PCA.

With the development of satellite constellations, it has become increasingly necessary to 
simulate vast quantities of orbits and compare their relative stabilities to determine the optimal 
choice. However, there is no formula to do this, and current methods are complex and inefficient, 
making them unsuitable. I seek to define an efficient index which both quantifies and categorises 
stability, given just one variable, eccentricity, with a minimal computational workload.      
Eccentricity measures how elliptical the path the orbit follows is, as shown in the diagram below.

Were these values to be rounded 
up, they would lose significance.
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