

Cross-Sectoral Differences in the Drivers of Innovation: Evidence from the Irish Community Innovation Survey

Justin Doran and Declan Jordan Department of Economics, University College Cork, Ireland

- Introduction
- Sectoral Variation and Innovation
- The Irish Community Innovation Survey
- Method
- Results

Sectoral Approach to Innovation Determinants

- Malerba (2004:9) "Innovation takes place in quite different sectoral environments, in terms of sources, actors and institutions. These differences are striking"
- Montobbio (2004:66) "An empirical analysis provides stylised evidence that sectors display different economic and innovative trends".
- Paper explores whether sectors differ in the relative importance of sources of knowledge for innovation, using data from Irish Community Innovation Survey 2004-06.
- Moves beyond traditional approaches to treatment of sectoral differences

Sectoral Approach to Innovation Determinants

- Why should sectors matter?
 - Structure-Conduct-Performance (SCP) Paradigm and Strategic Behaviour (Porter, 1980)
 - Localisation Economies (Marshall, 1890)
 - Accessibility to knowledge and proximity (Boschma, 2005)
 - Pavitt's (1984) taxonomy of sectoral change
- Implications for a 'one-size fits all' policy perspective.
- Understanding how sectors source knowledge for innovation may facilitate more focused or nuanced policy making.

- Community Innovation Survey (CIS) 2004–06
- ▶ 1,974 responses = 48% response rate
- Companies employing more than 10 employees
- Three forms of innovation output
 - Product innovation (new to firm or new to market)
 - Process innovation
 - Organisation innovation

Innovation Output

- Product Innovation
 - New or significantly improved good or service
- Process Innovation
 - Methods of manufacturing or producing goods and services
 - Logistics, delivery or distribution methods
 - Supporting activities e.g. maintenance, procurement, IT systems
- Organisational Innovation
 - Business practices for organising procedures
 - Methods of organising work responsibilities or decisionmaking
 - Organising external relations

- Substantial differences in sectoral classification required
- Logical, coherent selection of firms that operate in a similar manner
- Broad enough to provide statistically robust estimations for each sector
- Sectors identified (including NACE Rev 1 codes):
 - High-Tech Manufacturing (24,29,30-35)
 - All Other Manufacturing (10–14, 15–37 excl high-tech, 40– 41)
 - Wholesale, Transport, Storage and Communications (51, 60-64)
 - Financial Intermediation (65-67)

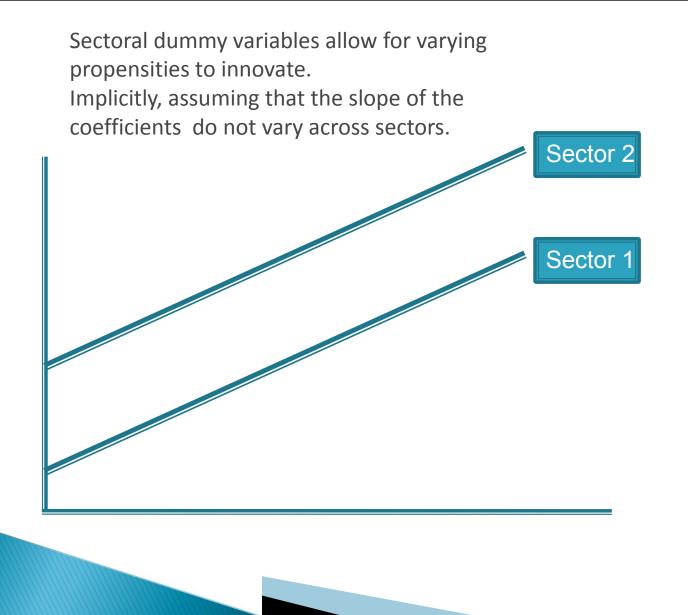
Table 1 – Descriptive Statistics

Variable	
External Interaction	
Group (%)	9
Supplier (%)	11
Customer (%)	9
Competitor (%)	3
Consultant (%)	6
Public Interaction (%)	8
R&D (%)	25
Control Variables	
Employment (mean)	124
Irish Owned (%)	74
Innovation Output	
New to Firm (%)	22
New to Market (%)	25
Process (%)	31
Organisational (%)	44
Sector (% in each sector)	
High-Technology Manufacturing	15
All Other Manufacturing	35
Wholesale, Transport, Storage and Communication	40
Financial Intermediation	10

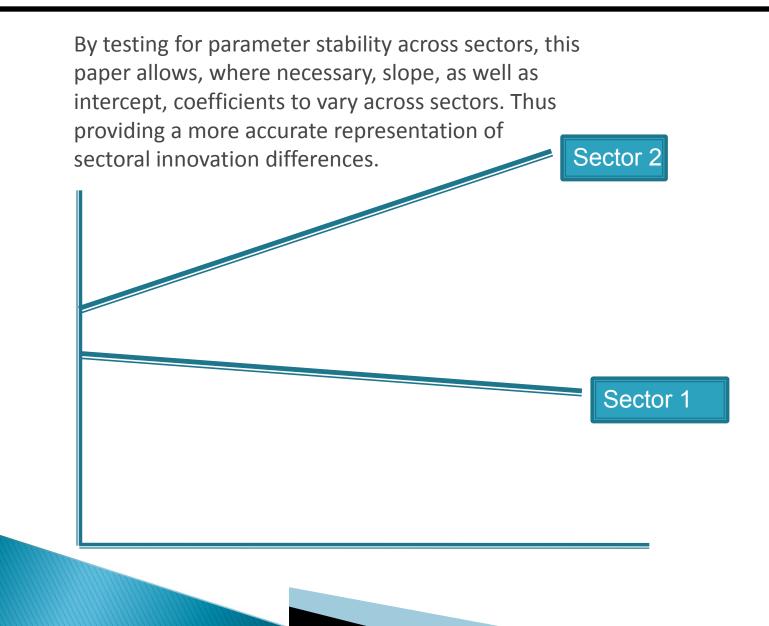
Initially an innovation production function, specified in equation
(1) is estimated.

 $IO_{i} = \alpha_{0} + \beta_{k}EI_{ki} + \chi R \& D_{i} + \delta_{m}Z_{mi} + \phi_{n}S_{ni} + \varepsilon_{i}$

Where:


- IO is a binary indicator of innovation output
- El is series of k binary indicators of whether a firm engaged in external interaction with a range of agents
- R&D is a binary indicator of whether a firm engaged in research and development.
- Z is a range of business specific factors.
- S is a series of binary variables indicating the sector in which the firm operates.

- Equation 1 is estimated using a probit model for each type of innovator.
- The key contribution of this paper is to assess whether innovation activity varies across sectors.
- Traditionally, a series of dummy variables are included in innovation production functions to control for different propensities to innovate across sectors.
- However, this traditional approach assumes that the slopes of the coefficients and their relative magnitude and importance do not vary.
- This paper therefore tests the estimates from equation (1) for parameter stability across sectoral classifications using the likelihood ratio test.



Controlling for Sectors

Controlling for Sectors

- The implementation of the likelihood-ratio test requires the estimation of the unrestricted equation (1).
 - Where all coefficients, regardless of the firms sector, are equal.
- This unrestricted model is then compared to an restricted model where the estimates are restricted across sectors.
- The restricted model can be specified as equation (2)

$$IO_{is} = \alpha_{0s} + \beta_{ks} EI_{kis} + \chi_s R \& D_{is} + \delta_{ms} Z_{mis} + \varepsilon_{is}$$

Where all variables are defined as previously but a separate estimate is derived for each sector.

- Once the estimates are derived for the restricted and unrestricted equations a likelihood-ratio test can be applied.
- The null hypothesis of the likelihood-ratio test is that the likelihood-ratio of unrestricted model is equal to the sum of the likelihood-ratios of all the sub-models.

$$L(\hat{\theta}) = \sum_{j=1}^{k} L_{j}(\hat{\theta}_{j})$$

 If this is rejected we reject the hypothesis that the unrestricted probit model applies to each of the sectoral subsets.

Table 2 – Restricted Estimations

Variable	Process	Organis- ational	New to Firm	New to Market
Constant	-0.5528	-0.2929	-0.8262	-0.9492
External Interaction				
Group	0.2196	0.1961	-0.0369	0.2717*
Supplier	0.615***	0.672***	0.409***	0.411***
Customer	-0.0723	-0.2106	0.440***	0.2221
Competitor	0.667***	0.0207	0.1934	0.2306
Consultant	0.1245	0.2348	-0.424***	-0.349*
Public Interaction	0.0822	0.334***	-0.0648	0.0636
R&D	1.103***	0.798***	1.097***	1.199***
Control Variables				
Employment	0.0001**	0	0	0.0001
Irish Owned	-0.204***	-0.293***	-0.262***	-0.254***
Sector				
All Other Manufacturing	-0.0841	-0.0364	-0.175*	-0.128
W,T,S&C	-0.198*	0.0732	-0.1276	-0.245**
Financial Intermediation	-0.2172	0.1971	-0.253*	-0.579***
No. of obs.	1722	1722	1722	1722
Wald Chi2	447.66	284.18	329.4	423.58
	0	0	0	0
Pseudo R2	0.2021	0.1208	0.176	0.2385
T an libelihood		1000 07		

Table 3 – Unrestricted Estimations

	New to Fire	n Innovation		
Variable	High-Tech Man.	All Other Man.	W,T,S & C	Financial Inter.
Constant	-0.6591	-1.4745	-0.6872	-0.9713
External Interaction				
Group	-0.0819	0.2723	-0.4756	0.5604
Supplier	0.1152	0.3524	0.6368***	0.0528
Customer	0.1943	0.2246	1.4240***	-0.3932
Competitor	0.0742	0.239	-0.1321	0.5338
Consultant	-0.1358	-0.325	-0.7812*	-0.4508
Public Interaction	0.211	0.0508	-0.8523	-0.5103
R&D	0.895***	1.206***	1.141***	1.157***
Control Variables				
Employment	-0.0001	0.0004	0.0001	0.0001
Irish Owned	-0.2558	0.2067	-0.6358***	-0.5490**
No. of obs.	277	591	688	166
Wald Chi2	42.78	128.36	101.27	37.26
	2000	0.0000	0.0000	0.0000

Table 4 – Unrestricted Estimations

New to Market Innovation							
Variable	High-Tech Man.	All Other Man.	W,T,S & C	Financial Inter.			
Constant	-0.8214	-1.3214	-0.9269	-1.7128			
External Interaction							
Group	-0.0614	0.793***	0.4773	0.2326			
Supplier	0.3204	0.1667	0.983***	-1.0912			
Customer	-0.1376	0.2109	0.880***	-0.5886			
Competitor	0.338	0.6842	-1.221***	1.1333*			
Consultant	0.2195	-0.823***	-1.449***	2.064**			
Public Interaction	0.2138	0.0421	-0.0236	-1.2029			
R&D	0.950***	1.312***	1.236***	1.702***			
Control Variables				1			
Employment	0.0001	0.0007	0.0001	0.0001			
Irish Owned	-0.1297	-0.0684	-0.6673***	-0.1796			
No. of obs.	277	591	688	166			
Wald Chi2	55.2	158.2	119.39	54.76			
	0	0	0	0			
Pseudo R2	0.1471	0.2463	0.2303	0.38			
Log-likelihood	-160.04	-242.09	-199.52	-44.67			

- For process and organisational innovation no evidence of variation in sources across sectors.
- For both types of product innovation, sectors source knowledge differently.
- R&D is significantly positive across all sectors.
- For new to firm innovation the external interaction effects are driven by the largest (WTSC) sector. No other sector demonstrates a significant El effect.

- No evidence of a variation between indigenous and foreign businesses in innovation propensity for manufacturing sectors.
- For new to market product innovation a more complex picture emerges.
- The El effects vary across sectors.
- For new to market product innovation indigenous businesses have a lower innovation propensity for the WTSC sector only.

Conclusion

- Care required in drawing implications for all sectors from analysis at higher level of aggregation.
- One size does not fit all!
- Sectors with a larger proportion of the sample can dominate and mask what is happening at sectoral level.
- Innovation policy that seeks to support innovation across an economy must take account of specific sectoral issues.
- Differentiated policy supports and interventions may be worthwhile.